Efficient Windows: Fills and Spacers

Gas Fills

An improvement that can be made to the thermal performance of insulating glazing units is to reduce the conductance of the air space between the layers. Originally, the space was filled with air or flushed with dry nitrogen just prior to sealing. In a sealed glass insulating unit, air currents between the two panes of glazing carry heat to the top of the unit and settle into cold pools at the bottom. Filling the space with a less conductive, more viscous, or slow-moving gas minimizes the convection currents within the space, conduction through the gas is reduced, and the overall transfer of heat between the inside and outside is reduced.

Manufacturers have introduced the use of argon and krypton gas fills, with measurable improvement in thermal performance. Argon is inexpensive, nontoxic, nonreactive, clear, and odorless. The optimal spacing for an argon-filled unit is the same as for air, about 1/2 inch (11-13 mm). Krypton has better thermal performance, but is more expensive to produce. Krypton is particularly useful when the space between glazings must be thinner than normally desired, for example, 1/4 inch (6 mm). The optimum gap width for krypton is 3/8" (9mm). A mixture of krypton and argon gases is also used as a compromise between thermal performance and cost.

Edge Spacers

The layers of glazing in an insulating unit must be held apart at the appropriate distance by spacers. Because of its excellent structural properties, window manufacturers started using aluminum spacers in the 1960's and 1970's. Unfortunately, aluminum is an excellent conductor of heat and the aluminum spacer used in most standard edge systems represented a significant thermal "short circuit" at the edge of the insulating glass unit (IGU), which reduces the benefits of improved glazings. In addition to the increased heat loss, the colder edge is more prone to condensation.

To address this problem, window manufacturers have developed a series of innovative edge systems to address these problems, including solutions that depend on material substitutions as well as radically new designs. One approach to reducing heat loss has been to replace the aluminum spacer with a metal that is less conductive, e.g. stainless steel, and change the cross-sectional shape of the spacer. These designs are widely used in windows today.

Another approach is to replace the metal with a design that uses materials that are better insulating. The most commonly used design incorporates spacer, sealer, and desiccant in a thermoplastic compound that contains a blend of desiccant materials and incorporates a thin, fluted metal shim of aluminum or stainless steel. Another approach uses an insulating silicone foam spacer that incorporates a desiccant and has a high-strength adhesive at its edges to bond to glass. The foam is backed with a secondary sealant. Both extruded vinyl and fiberglass spacers have also been used in place of metal designs.

For additional information on this topic, please consult the Gas Fills and Spacers sections of the Efficient Windows Collaborative website.